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Abstract. The convergence rate of an estimator can vary when applied to datasets from differ-

ent populations. As the population is unknown in practice, so is the corresponding convergence

rate. In this paper, we introduce a method to conduct inference on estimators whose conver-

gence rates are unknown. Specifically, we extend the subsampling approach of Bertail, Politis,

and Romano (1999) to situations where the convergence rate may include logarithmic compo-

nents. This extension proves to be particularly relevant in economic studies. To illustrate the

practical relevance and implementation of our results, we discuss two main examples: (i) non-

parametric regression with measurement error; and (ii) intercept estimation in binary choice

models. In each case, our approach provides robust inference in settings where convergence

rates are unknown; simulation results validate our findings.

1. Introduction

To conduct valid statistical inference on a population object using an estimator requires quan-
tifying the estimator’s uncertainty. Conventionally, the asymptotic variance of the estimator
is used to approximate its finite sample variance. Unfortunately, oftentimes, the asymptotic
variance is unknown, difficult to estimate, or inaccurate in finite samples. In such cases, boot-
strap methods are employed instead. And when the bootstrap fails, all eyes turn to subsampling
(Politis and Romano, 1994).

Subsampling is a robust solution that is valid under minimal assumptions. However, it requires
knowledge of the convergence rate of the estimator if one is unwilling - or unable - to standardize
the estimator using an estimate of the variance. Bertail, Politis and Romano (1999) proposed a
method to estimate the convergence rate when the rate is polynomial in the sample size n. More
concretely, let {Xl}nl=1 be a random sample of X ∼ Pθ, and Tn be a consistent estimator of a
parameter θ based on the sample with

nβ1(log n)β2(Tn − θ)
d→ L,

where β1 and β2 depend on Pθ. Suppose that the limit law L has cumulative distribution function
K(x,Pθ). If β1 and β2 are known, K(x,Pθ) can be approximated by subsampling as in Politis
and Romano (1994).

If β1 is unknown and β2 = 0, Bertail, Politis and Romano (1999) proposed a method to
estimate β1 by comparing distributions from varying subsample sizes. The distribution K(x,Pθ)
can then be approximated via subsampling based on the estimate of β1. In this paper, we extend
their method to the general case where β1 and β2 are both unknown, show the consistency of
our estimators of β1 and β2, and establish the asymptotic validity of subsampling inference using
these estimated convergence rates.
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Before presenting our main result in Section 2, we close this section with some motivating
examples of our inference method. We provide full details of the examples to be used in our
numerical illustrations in Section 3, as well as some briefer comments on further examples.

1.1. Nonparametric regression with error-in-variables. Consider the nonparametric re-
gression model with error-in-variables

E[Y |X∗] = g(X∗), X = X∗ + ε, W = X∗ + ν,

where (Y,X,W ) ∈ R3 are observable and (X∗, ε, ν) ∈ R3 are unobservable. X and W are noisy
measurements of the unobserved X∗ with measurement errors ε and ν respectively; ε and ν

are classical measurement errors in the sense that they are independent of X∗. In this case, to
estimate the regression function g(·) using a random sample {Yj , Xj ,Wj}nj=1 of (Y,X,W ), it is
common to use

ĝ(x) =

∑n
j=1 K̂

(
x−Wj

bn

)
Yj∑n

j=1 K̂
(
x−Wj

bn

) ,

where K̂(u) = 1
2π

∫
eitu Kft(t)

f̂ ftε (t/bn)
dt is known as a deconvolution kernel, K is a conventional kernel

function, bn is a bandwidth parameter, and f̂ε is an estimate of the characteristic function f ftε
of ε, based on {Xj ,Wj}nj=1. For example, based on Kotlarski’s (1967) identity, under the mean
independence between measurement errors, Schennach (2004) suggests

f̂ ftε (t) =

∑n
j=1 e

itXj

n exp

(∫ t
0

∑n
j=1Xje

isWj∑n
j=1 e

isWj
ds

) .
It is known that the convergence rate of ĝ depends on the smoothness of the density fε of ε,
the density f of X∗, and the regression function g. In particular, following Schennach (2004),
suppose |{gf}ft(t)| ≤ d1(1+|t|)−γ for t ∈ R and positive constant γ, if d0(1+|t|)−γx,0 ≤ |f ft(t)| ≤
d1(1 + |t|)−γx,0 and d0(1 + |t|)−γε ≤ |f ftε (t)| ≤ d1(1 + |t|)−γε for t ∈ R and some positive constants

d0, d1, γε and γx,0, using a bandwidth of order O
(
n

1
−2γx,0−γε+γ

)
, we have

nβ1{ĝ(x)− g(x)} d→ N(b1(x), v1(x)),

where β1 = γ+1
−2γx,0−γε+γ . If d0 exp(a|t|γx,1) ≤ |f ft(t)| ≤ d1 exp(a|t|γx,1) and d0(1 + |t|)−γε ≤

|f ftε (t)| ≤ d1(1 + |t|)−γε for t ∈ R and some positive constants a, d0, d1, γε and γx,1, using a
bandwidth of order O

(
{log n}1/γx,1

)
, we have

(log n)β2{ĝ(x)− g(x)} d→ N(b2(x), v2(x)),

where β2 = γ+1
γx,1

. These results can be summarized as

nβ1(log n)β2{ĝ(x)− g(x)} d→ L,

where L is a normally distributed random variable with potentially non-zero mean and non-unit
variance. In practice, we do not know the values of β1 and β2 because fε, f and g are unknown
so conventional subsampling cannot be used. Furthermore, the asymptotic variance is complex
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to estimate and, as discussed in Kato and Sasaki (2019), no valid bootstrap procedure has been
found for this setting.

1.2. Estimating the intercept of a binary choice model. Consider the binary choice model

Y = I{α+ Z − U ≥ 0},

where (Y,Z) ∈ R2 are observable, and U ∈ R is unobservable. U has zero mean, a strictly
increasing cumulative distribution function, and is independent of Z. To estimate the intercept
α, following Lewbel (1997), we can use

α̂ =
1

n

n∑
j=1

Yj − I{Zj > 0}
ĥ(Zj)

I{|Zj | ≤ τn},

where ĥ is an estimator of the density of Z (for example, the kernel density estimator) and τn is
a trimming sequence. Khan and Tamer (2010) show that

nβ1(log n)β2(α̂− α)
d→ L,

where L is a normally distributed random variable with potentially non-zero mean and non-unit
variance, and values of β1 and β2 depend on the tail behavior of the densities of Z and U . In
particular, when both Z and U have a standard logistic distribution, β1 = 0.5 and β2 = −0.5;
when Z has a standard normal distribution and U has a standard logistic distribution, β1 = 0.25

and β2 = −0.25; and when Z has a Cauchy distribution and U has a standard logistic distribution,
β1 = 0.5 and β2 = 0, i.e. the regular parametric rate. In practice, we do not know the values
of β1 and β2 because the distributions of Z and U are unknown so conventional subsampling
is infeasible. While the asymptotic variance of this estimator is simple to compute, as show in
Lewbel (1997) is can be inaccurate in finite samples and its validity requires strong conditions
on the tail index of the error distribution. Furthermore, as shown in Kahn and Nekipelov (2022)
and Heiler and Kazak (2021), estimators of irregularly identified objects (such as the intercept
in this model), do not admit valid bootstrap inference.

1.3. Other examples.

Inverse probability weighting. Sasaki and Ura (2022) consider estimation of moments of
the form E[B/A]. A common example is the mean potential outcome given by E[Y (1)] =

E[DY/p(X)], where D is a binary treatment, Y (1) is a potential outcome for D = 1, Y is an
observable outcome, X is a vector of covariates, and p(X) = P (D = 1|X) is the propensity score.
When dividing by a probability, care must be taken to deal with cases where the probability is
close to zero; typically, this is achieved by trimming away observations where the denominator is
below some threshold. Unlike Kahn and Tamer (2010), the trimming bias is explicitly corrected
by Sasaki and Ura (2022). They then derive the asymptotic normality for the standardized
bias-corrected trimmed estimator, and use the normal asymptotic approximation for inference.

Ma and Wang (2020) also consider a trimmed version of the inverse probability weighting
(IPW) estimator, and derive the asymptotic distribution when the propensity score is known.
Unlike Sasaki and Ura (2022), inference is conducted using subsampling for the standardized
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estimator (so the variance has been estimated before subsampling). Heiler and Kazak (2021) also
derive the asymptotic distribution of the IPW estimator, but do not trim and allow the propensity
score to be estimated. For inference, they use the m out of n bootstrap (with replacement) for
the standardized estimator. According to Bickel, Götze and van Zwet (2012), it is possible to
obtain a similar result under weaker assumptions using our subsampling procedures.

Sample selection model. Kahn and Nekipelov (2022) proposed a closed-form estimator for
the intercept of the outcome equation in a sample selection model; see, e.g., Heckman (1990)
and Andrews and Schafgans (1998) for the practical importance of the intercept in such models.
While this estimator is consistent over large classes of error distributions, it will have a rate of
convergence that discontinuously changes with the tail behavior of the error terms - something
that is inherently unobservable - and that may be logarithmic. Kahn and Nekipelov (2022) go on
to show that any intercept estimator for this model that is uniformly consistent over such a class
of error distributions is not compatible with inference using pivotal statistics or the bootstrap.
In answer to this, they develop a novel form of inference termed locally uniform inference based
on drifting parameter asymptotics. We note, however, that the subsampling approach of this
paper is applicable under weaker assumptions than they impose.

Conditional moment inequality models. Armstrong (2015) proposed a Kolmogorov–Smirnov-
style test for conditional moment inequality models when the parameters may be on the boundary
of the parameter space. To determine critical values for his test, he notes that the convergence
rate of the statistic depends on unknown quantities; thus, he first estimates the convergence rate.
However, in Theorem 5.1, he shows that in some cases, the rate is at least as slow as n(1+p)/(1+2p),
where p is the number of bounded derivatives of the moment function, so that logarithmic rates
cannot be ruled out. Consequently, he adjusts the approach of Bertail, Politis and Romano
(1999) by truncating the convergence rate from above whenever the polynomial rate requirement
of the approach appears to be violated. Consequently, although the tests proposed by Armstrong
(2015) are exact when the convergence rate is polynomial, when truncation is applied (i.e. when
the rate is logarithmic), the test is conservative. By using our approach, it is likely that his test
could be exact in all cases with no unnecessary loss in power for logarithmic settings.

2. Main result

We first present our estimation method for the convergence rates. Let {Xl}nl=1 be a random
sample of X ∼ Pθ, and Tn be a consistent estimator of θ based on {Xl}nl=1 with

nβ1(log n)β2(Tn − θ)
d→ L,

for some unknown convergence rates β1 and β2 that depend on Pθ. Let K(x,Pθ) be the cumu-
lative distribution function of the limiting distribution L. As in Bertail, Politis and Romano
(1999), our rate estimator is constructed using the empirical distribution function of subsampled
statistics of Tn, that is

Kbn(x) =
1

q

q∑
s=1

I{Tbn,s − Tn ≤ x},
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where {Tbn,s}
q
s=1 are values of the statistic Tn applied to subsamples with a subsample size bn.

Let K−1(t,Pθ) and K−1bn (t) be the t-th quantiles of K(x,Pθ) and Kbn(x), respectively. Under
mild conditions presented below, an application of Bertail, Politis and Romano (1999, Lemma
1) implies the following relationship for these quantiles:

logK−1bn (t) = logK−1(t,Pθ)− β1 log bn − β2 log log bn + op(1).

Taking sequences of quantile points {tj}Jj=1 and subsample sizes {bin}Ii=1 and averaging over j,
this relation becomes

1

J

J∑
j=1

logK−1bin(tj)︸ ︷︷ ︸
yi

=
1

J

J∑
j=1

logK−1(tj ,Pθ)︸ ︷︷ ︸
β0

−β1 log bin︸ ︷︷ ︸
xi

−β2 log log bin︸ ︷︷ ︸
zi

+op(1), (1)

for i = 1, . . . , I. Based on this, we propose to estimate β1 and β2 by the OLS estimator for the
regression of yi on (1, xi, zi), denoted by β̂1({bin}Ii=1) and β̂2({bin}Ii=1), respectively. Compared
to Bertail, Politis and Romano (1999), we introduce an additional regressor zi = log log bin to
estimate the logarithmic convergence rate β2.

To derive the convergence rates of these estimators, we impose the following assumptions.

Assumption.

(i): {Xl}nl=1 is a random sample of X ∼ Pθ.
(ii): nβ1(log n)β2{Tn − θ}

d→ K(x,Pθ) for constants β1 ≥ 0 and β2.
(iii): K(x,Pθ) is continuous and strictly increasing on (k0, k1) as a function of x, where
k0 = sup{x : K(x,Pθ) = 0} and k1 = inf{x : K(x,Pθ) = 1}.

(iv): bn →∞ and bn/n→ 0 as n→∞.

Assumptions (i) and (iii) are taken from Politis and Romano (1994). Assumption (i) may be
relaxed to allow weakly dependent data by constructing subsamples for consecutive observations.
Assumption (iii) is a standard condition to establish the validity of subsampling approximations.
Assumption (ii) is new in that both β1 and β2 are considered unknown, a crucial characteristic
shared by the examples discussed in Section 1. Assumption (iv) also originates from Politis and
Romano (1994), but its interpretation differs slightly in our setting. In particular, to estimate
β1 and β2 accurately, we need bin → ∞ and bin/n → 0 for Equation (1) to hold for all i =

1, . . . , I. Theorem 1 below demonstrates that, based on our choice of bin, Assumption (iv) remains
sufficient. This indicates that we do not require additional assumptions on the subsample size
bn compared to those given in Politis and Romano (1994), even though the convergence rate is
estimated. A similar observation was made by Bertail, Politis and Romano (1999) in a simpler
scenario where β2 is known to be 0.

Under these assumptions, the consistency and convergence rates of our rate estimators are
obtained as follows.

5



Theorem 1. Under Assumptions (i)-(iv), it holds that for 0 < γ1 < · · · < γI < 1,

β̂1({nγi}Ii=1)− β1 = op((log n)−1),

β̂2({exp((log n)γi)}Ii=1)− β2 = op((log log n)−1).

This theorem is a generalization of Bertail, Politis and Romano (1999, Theorem 1) to the case
where β2 may be non-zero. In accordance with Bertail, Politis and Romano (1999), we employ a
series of subsamples of varying size to estimate the convergence rate of Tn. Unlike Bertail, Politis
and Romano (1999), however, here we require different sets of subsamples to estimate β1 and
β2. In particular, we use {nγi}Ii=1 to estimate β1 and {exp((log n)γi)}Ii=1 for β2. This selection
is motivated by the need to quantify the convergence rate of our estimators of β1 and β2, which
is crucial to establish the asymptotic validity of the proposed subsampling procedure. So, the
practical implementation of the approach proceeds first with a regression of yi on (1, xi, zi) as
defined in Equation (1) using {nγi}Ii=1, where the coefficient on xi gives the estimate β̂1; the
regression is repeated using {exp((log n)γi)}Ii=1 and the coefficient on zi gives the estimate β̂2.

For the remainder of the paper, we suppress the dependence on the subsample sizes and let
β̂1 = β̂1({nγi}Ii=1) , β̂2 = β̂2({exp((log n)γi)}Ii=1), and β̂ = (β̂1, β̂2) to economise on notation.
By plugging in these rate estimators, our subsampling estimator for the distribution function
K(x,Pθ) of L is defined as

Kbn(x|β̂) =
1

q

q∑
s=1

I{bβ̂1n (log bn)β̂2(Tbn,s − Tn) ≤ x}.

The following theorem establishes the asymptotic validity of the proposed subsampling proce-
dures.

Theorem 2. Under Assumptions (i)-(iv), it holds that for 0 < γ1 < · · · < γI < 1,

sup
x
|Kbn(x|β̂)−K(x,Pθ)|

p→ 0.

This theorem implies that the t-th quantile K−1bn (t|β̂) of Kbn(x|β̂) is also consistent for the
t-th quantile K−1(t,Pθ) of K(x,Pθ). Thus the asymptotic coverage probability of the interval
[Tn − b−β̂1n (log bn)−β̂2K−1bn (t|β̂),∞) is the nominal level t. This indicates that Theorems 1 and
2 together provide a method to construct confidence intervals based on subsampling in the case
where the convergence rate is unknown. Given that we do not assume a particular model, this
method is widely applicable.

3. Simulation

We evaluate the finite sample performance of our procedure in two canonical settings: (i)
nonparametric regression with a mismeasured regressor, and (ii) estimation of the intercept in a
binary choice model.

As discussed in the previous section, we must choose a sequence of subsample sizes, {bin}Ii=1,
to estimate β1 and β2. In that section, we show that different sequences for β1 and β2 are
required, and must take the form {nγi}Ii=1 and {exp((log n)γi)}Ii=1, for β1 and β2 respectively.
Here, we propose a method to determine a suitable choice for (γ1, . . . , γI). First, we choose an
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overly wide range from which we can then search for a more appropriate range in a data-driven
way. The overly wide range is chosen as a grid from 0.5 to 0.9 with increments of 0.025, with
a lower bound for the grid such that min1≤i≤I bin > log(n)2, as in Heiler and Kazak (2021).
Next, we estimate the OLS regression to determine (β1, β2) using this initial (γ1, . . . , γI), and
save the R-squared from this regression. We then re-estimate the OLS regression but now use
(γ2, . . . , γI), and again save the R-squared. Following this, we estimate the OLS regression using
(γ1, . . . , γ(I−1)) and save the R-squared. Now estimate the OLS regression with (γ2, . . . , γ(I−1));
save the R-squared. Continue this process alternating between removing the smallest and largest
γ. The regression that produces the largest R-squared is used as the sequence of choice, giving
the estimated (β1, β2). Intuitively, this procedure finds the ‘correct’ range of subsample sizes
that can most accurately estimate the convergence rate.1

To avoid excessive computational cost, we can use the same subsamples to determine the
optimal subsample size for estimating the distribution of the deconvolution estimator. We do this
using the method of Bickel and Sakov (2008). This constitutes choosing the optimal subsample
size as the one whose distribution is closest to the distribution of the next consecutive candidate
subsample distribution (we use an L1 norm to measure this distance). In other words, the
optimal subsample size b∗n, is chosen as b∗n = argminbin ||Lbin −Lb(i+1)n

||1, where Lbin denotes the
distribution using subsamples of size bin. Throughout, we use 2000 subsamples to approximate
the distribution of each subsample distribution.

For setting (a), we use the deconvolution estimator of Schennach (2004), as detailed above in
Section 1.1, and follow the simulation setting of that paper. In particular, we use the regression
function

E[Y |X∗] =


−1 if X∗ < 1,

X∗ if X∗ ∈ [−1, 1],

1 if X∗ > 1,

with X = X∗ + ε and W = X∗ + ν, where only (Y,X,W ) are observable; so (X,W ) are
repeated noisy measurements of the unobserved true regressor X∗. The regression error term
is independent of (X∗, ε, v) and drawn from N(0, 1/4), and X∗ is independent of (ε, v). As in
Schennach (2004), our object of interest is E[Y |X = 1].

To showcase the ability of our subsampling method to adapt to varying convergence rates, we
consider two cases based on the smoothness of the distributions of X∗, ε, and v. First, we take
X∗, ε, and v to be normally distributed. Schennach (2004) shows that in this case, and when
the regression function is ordinary smooth of order 2 (as in this simulation), the deconvolution
estimator converges at rate Op((lnn)−1/2). In the second case, we take X∗, ε, and v to follow a
Laplace distribution. In this case, Schennach (2004) shows the converge rate is Op(n−1/4).

We keep the signal-to-noise ratio fixed for both designs: X∗ has unit variance, and both
measurement errors have a variance of 1/4 (this again follows the simulation design in Schennach,
2004). We use the infinite-order flat-top kernel proposed by McMurry and Politis (2004), which

1Simulation results (not presented) suggest that the results are insensitive to the initial choice of (γ1, ..., γI) due
to the second data-driven search step.
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is defined by its Fourier transform

K ft(t) =


1 if |t| ≤ 0.05,

exp
{
− exp(−(|t|−0.05)2)

(|t|−1)2

}
if 0.05 < |t| < 1,

0 if |t| ≥ 1,

and the bandwidth is selected using the leave-one-out method of Dong, Otsu and Taylor (2023).
Table 1 reports coverage probabilities for a range of sample sizes n = {500, 1000, 2000} based

on 1000 Monte Carlo replications. Overall, the coverage of our subsampling confidence intervals
are accurate even for moderate sample sizes with a logarithmic convergence rate.

Table 1: Coverage probabilities for setting (a)

Distribution Normal Laplace

Sample Size 500 1000 2000 500 1000 2000

Nominal Prob.

90 88.0 90.9 87.4 93.8 93.6 89.8

95 94.0 96.1 94.2 96.5 96.6 95.2

99 98.9 99.4 99.3 99.2 99.4 98.8

Table 2 reports the power of a two-sided t-test with 5% nominal level for a test of the null
hypothesis E[Y |X = 1] = 0.5, where the true value is 1. As would be expected based on the
convergence rates, the test shows greater power in the logistic setting than the normal. It is also
encouraging to see the power increases with the sample size.

Table 2: Power for setting (a)

Distributions Normal Logistic

Sample Size 500 1000 2000 500 1000 2000

17.2 40.3 98.4 28.7 55.9 98.8

For setting (b), we use the estimator of Lewbel (1997), as detailed above in Section 1.2. The
trimming parameter τn is fixed at 0.001 (as in Lewbel, 1997), but results for τn = 0.01 and
τn = 0.0001 are almost identical. We use a kernel density estimator with a Gaussian kernel and
bandwidth chosen using likelihood cross-validation (Silverman, 1986).

We use the data generating process

Y = I{α+ δZ + U ≥ 0},

with α = 0 as the parameter of interest, δ = 1, and Z independent of U , where U follows
a logistic distribution with unit variance. We consider three cases based on the distribution
of Z. As shown by Khan and Tamer (2010), when Z has a logistic distribution, the conver-
gence rate is Op(n1/2(log n)−1/2); when Z has a normal distribution, the convergence rate is
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Op(n
1/4(log n)−1/4); and when Z has a Cauchy distribution, the convergence rate is Op(n1/2).

In each case, we set Z to have unit variance.
Table 3 reports coverage probabilities for a range of sample sizes n = {250, 500, 1000} based

on 1000 Monte Carlo replications. Again, with moderate sample sizes, the proposed subsampling
procedure with estimated convergence rates exhibits accurate coverage properties across all cases.

Table 3: Coverage probabilities for setting (b)

Distributions Logistic Normal Cauchy

Sample Size 250 500 1000 250 500 1000 250 500 1000

Nominal Prob.

90 89.7 91.6 89.2 91.9 89.1 91.7 88.8 90.4 90.1

95 94.8 95.4 94.1 95.9 93.9 96.0 94.2 95.3 95.3

99 99.1 99.2 98.5 98.8 98.4 99.1 98.5 99.0 98.9

Table 4 reports the power of a two-sided t-test with 5% nominal level for a test of the null
hypothesis α = 0.5, where the true value is 0. Again, as the theoretical convergence rates would
suggest, the Cauchy setting exhibits the greatest power and the normal has the lowest power.
All settings see an increase in power with the sample size.

Table 4: Power for setting (b)

Distributions Logistic Normal Cauchy

Sample Size 250 500 1000 250 500 1000 250 500 1000

64.6 84.7 98.9 58.1 81.8 95.7 66.6 88.1 99.6
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Appendix A. Mathematical appendix

A.1. Proof of Theorem 1. Recall the definitions of yi, xi, zi, and β0 in Equation (1), and let
ui = yi − β0 − β1xi − β2zi. Note that the rate estimators are explicitly written as

β̂1({bin}Ii=1) =

∑I
i=1(zi − z̄)2

∑I
i=1(xi − x̄)(yi − ȳ)−

∑I
i=1(xi − x̄)(zi − z̄)

∑I
i=1(zi − z̄)(yi − ȳ)∑I

i=1(xi − x̄)2
∑I

i=1(zi − z̄)2 −
{∑I

i=1(xi − x̄)(zi − z̄)
}2 ,

β̂2({bin}Ii=1) =
−
∑I

i=1(xi − x̄)(zi − z̄)
∑I

i=1(xi − x̄)(yi − ȳ) +
∑I

i=1(xi − x̄)2
∑I

i=1(zi − z̄)(yi − ȳ)∑I
i=1(xi − x̄)2

∑I
i=1(zi − z̄)2 −

{∑I
i=1(xi − x̄)(zi − z̄)

}2 ,

where ȳ = I−1
∑I

i=1 yi, x̄ = I−1
∑I

i=1 xi, and z̄ = I−1
∑I

i=1 zi. For β̂1({nγi}Ii=1), we have

β̂1({nγi}Ii=1)− β1

=

∑I
i=1(zi − z̄)2

∑I
i=1(xi − x̄)(ui − ū)−

∑I
i=1(xi − x̄)(zi − z̄)

∑I
i=1(zi − z̄)(ui − ū)∑I

i=1(xi − x̄)2
∑I

i=1(zi − z̄)2 −
{∑I

i=1(xi − x̄)(zi − z̄)
}2

=
1

1− ρ̂2x,z


∑I

i=1(xi − x̄)(ui − ū)∑I
i=1(xi − x̄)2

− ρ̂x,z
∑I

i=1(zi − z̄)(ui − ū)√∑I
i=1(xi − x̄)2

∑I
i=1(zi − z̄)2

 ,

where ū = I−1
∑I

i=1 ui and ρ̂x,z denotes the sample correlation coefficient between {xi}Ii=1 and
{zi}Ii=1. Since |ρ̂x,z| ≤ 1,

∑I
i=1(ui − ū)2 = op(1), and

max


∣∣∣∣∣
∑I

i=1(xi − x̄)(ui − ū)∑I
i=1(xi − x̄)2

∣∣∣∣∣ ,
∣∣∣∣∣∣

∑I
i=1(zi − z̄)(ui − ū)√∑I

i=1(xi − x̄)2
∑I

i=1(zi − z̄)2

∣∣∣∣∣∣
 ≤

√∑I
i=1(ui − ū)2∑I
i=1(xi − x̄)2

,

it is sufficient to check the magnitude of
∑I

i=1(xi−x̄)2. Since xi = −γi log n, we have x̄ = −γ̄ log n

with γ̄ = I−1
∑I

i=1 γi and the first statement of the theorem follows from

I∑
i=1

(xi − x̄)2 =

I∑
i=1

(γ̄ log n− γi log n)2 = A(log n)2,

for a positive constant A =
∑I

i=1(γ̄ − γi)2.
By a similar argument, for β̂2({exp((log n)γi)}Ii=1), we have

β̂2({exp((log n)γi)}Ii=1)− β2

=

∑I
i=1(xi − x̄)2

∑I
i=1(zi − z̄)(ui − ū)−

∑I
i=1(xi − x̄)(zi − z̄)

∑I
i=1(xi − x̄)(ui − ū)∑I

i=1(xi − x̄)2
∑I

i=1(zi − z̄)2 −
{∑I

i=1(xi − x̄)(zi − z̄)
}2

=
1

1− ρ̂2x,z


∑I

i=1(zi − z̄)(ui − ū)∑I
i=1(zi − z̄)2

− ρ̂x,z
∑I

i=1(xi − x̄)(ui − ū)√∑I
i=1(xi − x̄)2

∑I
i=1(zi − z̄)2

 .

Since |ρ̂x,z| ≤ 1,
∑I

i=1(ui − ū)2 = op(1), and

max


∣∣∣∣∣
∑I

i=1(zi − z̄)(ui − ū)∑I
i=1(zi − z̄)2

∣∣∣∣∣ ,
∣∣∣∣∣∣

∑I
i=1(xi − x̄)(ui − ū)√∑I

i=1(xi − x̄)2
∑I

i=1(zi − z̄)2

∣∣∣∣∣∣
 ≤

√∑I
i=1(ui − ū)2∑I
i=1(zi − z̄)2

,
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it is sufficient to check the magnitude of
∑I

i=1(zi − z̄)2. Since zi = −γi log log n, the second
statement of the theorem follows from

I∑
i=1

(zi − z̄)2 =
I∑
i=1

(−γi log log n+ γ̄ log logn)2 = A(log log n)2.

A.2. Proof of Theorem 2. First, note that

Kbn(x|β̂) =
1

q

q∑
s=1

I{bβ̂1n (log bn)β̂2(Tbn,s − θ)− bβ̂1n (log bn)β̂2(Tn − θ) ≤ x}.

Also note that for any ε > 0, we have

P
(
bβ̂1n (log bn)β̂2 |Tn − θ| < ε

)
= P

(
nβ1(log n)β2 |Tn − θ| < εbβ1−β̂1n (log bn)β2−β̂2

nβ1(log n)β2

bβ1n (log bn)β2

)
→ 1,

(2)
where the convergence follows from Theorem 1 and Assumptions (ii) and (iv). Define

Un(x|β̂) =
1

q

q∑
s=1

I{bβ̂1n (log bn)β̂2(Tbn,s − θ) ≤ x}.

Then Equation (2) implies

Un(x− ε|β̂) ≤ Kbn(x|β̂) ≤ Un(x+ ε|β̂),

with probability approaching one. The conclusion follows from

Un(x|β̂) = Un(xbβ1−β̂1n (log bn)β2−β̂2 |β)
p→ K(x,Pθ)

for each x, where the convergence follows from Theorem 1 and the validity of standard subsam-
pling as in Politis and Romano (1994).
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